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Stress and emotional brain networks foster eating beha-
viors that can lead to obesity. The neural networks
underlying the complex interactions among stressors,
body, brain and food intake are now better understood.
Stressors, by activating a neural stress-response net-
work, bias cognition toward increased emotional
activity and degraded executive function. This causes
formed habits to be used rather than a cognitive apprai-
sal of responses. Stress also induces secretion of gluco-
corticoids, which increases motivation for food, and
insulin, which promotes food intake and obesity. Plea-
surable feeding then reduces activity in the stress-
response network, reinforcing the feeding habit. These
effects of stressors emphasize the importance of teach-
ing mental reappraisal techniques to restore responses
from habitual to thoughtful, thus battling stress-induced
obesity.

Introduction

We find ourselves in the middle of a severe epidemic of
obesity that affects not only adults but also has recently
permeated younger generations [1-6]. An understanding of
the underlying physiological causes of this growing pro-
blem is required for its solution.

The physiology of feeding behavior has been studied for
many years, generally providing rodents or other exper-
imental animals with standard lab chow. These studies,
using a single bland food, perforce concentrated on the
hypothalamic and brainstem regulation of energy balance.
The emergence of leptin as a key fat hormone that
stimulates secretion of the anorexigenic and sympathetic—
stimulatory neuropeptides and inhibits secretion of the
orexigenic and parasympathetic-stimulatory neuropep-
tides was of critical importance in understanding homeo-
static regulation of energy balance [1,7-10]. Moreover,
findings about other hormonal signals that acutely affect
feeding, such as ghrelin and other gut peptides activated by
fasting or feeding, added to our knowledge about regulators
of energy balance [9,10]. However, it has become glaringly
obvious that voluntary behaviors, stimulated by external or
internal challenges or pleasurable feelings, memories and
habits can override the basic homeostatic controls of energy
balance [11-17].

The increased amount of perceived stress experienced
by individuals in modern society affects feeding behavior
[18-20]. In fact, a recent study showed that sadness
favored eating of high fat/sweet, hedonically rewarding
foods, whereas intake during a happy state favored dried
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fruit [21]. The basis for this behavior and others that lead
to obesity are slowly becoming understood. They include
cortical and subcortical pathways that involve learning
and memory of reward and pleasure, as well as habit
formation and decreased cognitive control. Elevated stress
hormones and palatable food intake and the consequent
accretion of fat can serve as feedback signals that reduce
perceived stress [22], thus reinforcing stress-induced feed-
ing behavior.

This review focuses on emotional and regulatory brain
networks and how stress and glucocorticoid (GC) secretion
foster behaviors that can lead to obesity. From large num-
bers of recently available structural and functional mag-
netic resonance imaging (MRI, fMRI) studies on people,
and the relationships between stress and feeding found in
selected animal studies, the role of stress on the brain and
resulting behaviors is becoming rationalized. Together,
these studies suggest that programs promoting learned
increases in use of the executive brain during periods of
stress can reduce stress-induced eating and resultant
obesity.

Stress and food intake

People usually change their eating behaviors when they
perceive themselves to be stressed or are under persistent
external interpersonal, financial or other strains. Although
approximately 20% of people do not change feeding beha-
viors during stressful periods, the majority do; around 40%
or more increase and 40% or less decrease caloric intake
when stressed [14,23-25]. In prospective studies, it
appears that those who initially are at the upper range
of normal, or are overweight, are generally more inclined to
increase weight when stressed, whereas those who are of
normal- or underweight do not [2,24,26]. It seems possible
that the difference between the gainers and the losers
might be a consequence of higher insulin concentrations
in people with higher body mass index.

In both people and animals, a shift toward choosing
more pleasurable or palatable calories occurs whether or
not total caloric intake increases with stress [14,19,22,27—
29]. With choice [30,31], the foods eaten during times of
stress typically favor those with increased fat and/or sugar
content (Figure 1). Under controlled lab circumstances,
acute physical or emotional distress induces increased
intake of ‘comfort’ foods in humans and animals [21,29-
34], even when they are not hungry and have no homeo-
static need for calories [31,35].

Stress-induced feeding is also observed in normal
weight women who consciously monitor their food intake
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Figure 1. During stressful periods, there is a change in what type of food is eaten, independent of hyperphagia or hypophagia. There is a shift in food intake toward ‘comfort
foods’ that is independent of whether total caloric intake increases (dashed line) or decreases (unbroken line) from normal intake (horizontal dot-dashed line). Student intake
was retrospectively interrogated during periods of no stress (normal) or exam stress; the type of foods eaten and the amounts of foods were compared during the two periods.
Whether or not food intake increased or decreased, the type of food ingested shifted toward the more palatable sorts. Reproduced, with permission, from Ref. [14].

to remain slim exhibiting ‘dietary restraint’ (although this
can reflect ‘emotional’ eating [14]) [36,37]; such restraint
might, through the mental effort it takes, itself serve as a
chronic stressor [38]. Stress-induced feeding in women who
practice dietary restraint can represent an ironic example
that is observed when mental control is challenged by
increased mental load [39]. Disinhibition of dietary
restraint or possibly emotional eating is likely to occur
after a stressor or in the presence of palatable foods in a
social setting [37,38]. It has also been suggested that
stress-induced eating is similar to the effects of stress on
relapse to drug addiction [40,41]; indeed, the same brain
networks that include both initial liking and learned
motivation regulate these behaviors [42,43].

The emotional nervous system

Studies using imaging techniques in humans have become
invaluable in shedding light on the integration of emotion
into behavior. Experimental animals cannot be asked how
something feels except through their behaviors, and those
behaviors might not be correctly interpreted or elicited in
inappropriate contexts. Integration of emotion into
ongoing behavior is essential to provide the motivation
to perform the behaviors. This is shown by many neuro-
science studies on animals, in which essentials (food and
drink) are rationed, and then supplied as rewards that
induce the animals to perform desired tasks.

In the past decade, it has become increasingly clear that
the integrated activity of brain networks, rather than
single sites, determines coherent and integrated beha-
vioral (muscular), autonomic and endocrine responses to
what is happening at that moment. Moreover, it is certain
that ‘what’s going on’, both outside and inside the body,
perceived by the primary senses (vision, audition, touch,
taste, smell) and by interoceptors (stretch, pain, tempera-
ture, metabolites and hormones) determines the basis for
how one feels and the various responses that might result.

A simple sketch of the anatomical parts of brain
involved in stress and feeding behavior, based on imaging
studies (Figure 2) shows that the entire brain is involved.
Although complex, this figure represents only some of the
components in the networks of interactions between stress
and obesity. At the cortical level, the emotional brain is
embedded in the anterior insula that provides ‘feelings’
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resulting from integration of exteroceptive and interocep-
tive inputs [44] and ‘motivated behavior’ resulting from
integrated output from the anterior cingulate cortex [45—
48]. It is proposed that an instantaneous replica of the
momentary integrated information coming from inside and
outside the body is copied into the anterior insula and gives
rise to conscious feelings [46,48]. The anterior insula and
anterior cingulate communicate rapidly in large brained
mammals (whales, humans, elephants, great apes)
through specialized neurons, and the anterior cingulate
serves as the consciously motivated output in response to
stimuli, based on how the ‘self feels [46,49,50]. It is very
important to understand that at each organizational level
(spinal, medullary, pontine, midbrain, limbic and thalamo-
cortical), there is communication between the sensory
inputs and motor outputs. Moreover, there is also vertical,
reciprocal communication from the cortex to each of the
lower levels of brain. Thus, cognitive components of the
emotional nervous system can alter ongoing activity at
each of the subcortical components.

The components essential for homeostatic regulation of
energy balance are shown in Figure 2. Neurons in the
hypothalamus, brainstem and afferent nerves are well
studded with leptin, insulin and other hormonal receptors
[51-53]. These subcortical sites are sufficient to regulate
adequate food intake to sustain energy stores [54-56].
However, components in the limbic brain and frontal
cortex (Figure 2) can override the basic maintenance of
energy balance and result in either an underweight or
overweight phenotype [13].

Positron emission tomography studies and fMRI
analysis found that the amygdalae specifically respond
to both positive and negative alerting stimuli in humans
[57]. The nuclei accumbens, innervated by dopaminergic
neurons from the ventral tegmental area in the brainstem,
provide motivation to accomplish a behavior, either at the
automatic, habitual level, through the basal ganglia [58],
or consciously and with forethought, through the prefron-
tal cortex [12,13,59]. When a verbal instruction about how
to deal with emotion-provoking stimuli (reappraise) is
given to subjects before the stimuli, the prefrontal response
increases and the amygdalar response decreases and can
be entirely inhibited [57,60,61]. Such verbal instruction, or
chemical manipulations of the prefrontal cortex in rodents,
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Figure 2. Brain structures engaged in feeding behaviors. (a) At the cortical level, the emotional brain is embedded in the anterior insula that provides ‘feelings’ and in the
anterior cingulate cortex that governs ‘motivated behavior’. (b) The limbic brain is responsible for emotional (amygdala), motivational (nucleus accumbens) and habitual
(basal ganglia) responses, whereas (c) the brainstem, containing the hypothalamus, brainstem and spinal cord, regulates energy balance. Afferent inputs to the brain and to
emotional and cortical structures are shown on the left, and efferent outputs from cortical and subcortical habitual and emotional structures are shown on the right.
Horizontal interactions between afferent and efferent components exist at each level, and structures are also bidirectionally connected vertically. Although the hypothalamic
neurons are sufficient to regulate energy intake, components in the limbic brain and frontal cortex can override the basic maintenance of energy balance and result in either
an underweight or overweight phenotype. The cell groups shown in yellow represent the brainstem and spinal cord portion of the brain that is engaged with the
homeostatic maintenance of energy balance. The cell groups shown in orange can cause either an increase or decrease in food intake. DA, drug addiction.

activates the infralimbic prefrontal cortex, which features
prominently in extinction behavior, and can inhibit amyg-
dalar and accumbal as well as adrenocortical activity [62—
64]. This highly complex region is where cognitive control
of feelings and motivation is regulated [65,66]; it is acti-
vated in individuals with restriction eating disorders (Box
1) who are shown pictures of palatable foods [67]. Simplis-
tically, at the unconscious level, the amygdalae are the
sites at which emotions arise and the nuclei accumbens
provide motivation to carry out habitual behaviors appro-
priate to those emotions, whereas the cognitive, executive

Box 1. Restriction eating disorders

Restriction eating disorders are reviewed in Refs [100-103].
Anorexia nervosa (AN) is excessive and habitual regulation of
restricted food intake, whereas bulimia nervosa is restricted food
intake with frequent loss of control and binge eating followed by
purging [104]. Many people who do not meet criteria for an eating
disorder do restrict their food intake with the goal of weight stability,
and some of these restricted individuals eat more than they feel they
should during disinhibition of restriction. There is some disagree-
ment about what tests best detect restricted eaters and restricted
eaters with disinhibition [105]. However, restricted eaters, such as
patients with AN, appear to engage the prefrontal cortex when
shown highly palatable foods, whereas disinhibited restrictors
engage more amygdalar activity [106].

control of emotions and drive is heavily regulated by pre-
frontal cortical structures [68].

Stress, glucocorticoids, corticotropin-releasing factor
and the emotional nervous system

Threatening and cognitively meaningful stimuli activate
the emotional nervous system in humans and lab animals
[22,69]; the emotional brain and other prefrontal cortical
outputs determine to a large extent what behavioral
output (e.g. fight, flight or freezing) will be chosen [22].
Stress-induced elevations in GC secretion appear to inten-
sify emotions and motivation [69,70]. An overview of the
effects of elevating GC on a variety of rat behaviors drawn
from different studies strongly suggests that this stress
hormone increases wanting or motivation. It is clear that
context and training, as well as conditions for testing the
animal [71], are essential for a given effect; however, in all
cases, increasing GC increases the amplitude of the beha-
vioral effect, perhaps through actions at the ventral basal
ganglia in rats, and possibly in humans [72].

Stressors that provoke hypothalamo-pituitary-adrenal
(HPA) GC secretion also recruit a central stress-response
system, mediated by corticotrophic releasing factor (CRF)
neurons in the amygdala, that appears to bias normal
responses toward net increased output of activity from
the limbic brain that contains the amygdala and nucleus
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accumbens ([73], Figure 2). Elevated GC is required to
stimulate CRF synthesis and secretion from the central
nucleus of the amygdala and other limbic sites, and axons
from these CRF neurons innervate much of the limbic and
cortical brain, where CRF receptors are found. They also
innervate and affect activity in the brainstem monoaminer-
gic (noradrenergic, serotoninergic and dopaminergic)
neurons, which are responsible for alerting not only the
brain to cause discriminative and motivated behaviors
but also the hindbrain and premotor autonomic neurons
[69,74,75]. GCs additionally act on the monoaminergic
neurons to increase their amine synthesis and secretion
[69,75]. The resulting activation of this limbic stress—
response network ensures that the HPA response to
renewed stressors remains normal or facilitated, and over-
rides GC-induced inhibition of CRF synthesis and secretion
in the hypothalamic motor neurons of the HPA axis. This
could explain the apparent insensitivity to exogenous dexa-
methasone or other steroid feedback tests in chronically
stressed individuals (see Refs [69,74,75]) and certainly pre-
pares the stressed organism to respond to future insults.

GC receptors are also heavily expressed in the executive
brain of the prefrontal cortices, and chronic stressors acti-
vate norepinephrine secretion over these sites where GC
implants inhibit stress responses (reviewed in Ref. [63]);
the executive brain has the potential to control activity in
limbic brain when it is engaged [65], although in stressed
rodents, and perhaps man, executive dysfunction and pre-
frontal cortical remodeling occurs [76,77].

GC, food intake and insulin: ‘comfort foods’
GC infusions increase caloric intake in both humans and
rats [70,78]. Interestingly, with only chow available,
adrenalectomized rats treated with various levels of corti-
costerone do not reliably eat more chow, but if sucrose and/
or fat are available the rats increase intake of these foods in
proportion to the circulating GC concentrations [70]. It is
important to note that, as GCs increase, insulin secretion
also increases, as is well-known from the strong association
of Cushing’s syndrome with type 2 diabetes [79]. In fact,
when adrenalectomized rats become diabetic with strepto-
zotocin, they increase chow intake in proportion to GC
levels, but no longer increase sucrose intake above the
amounts observed in the absence of steroid [70]. Thus, in
the presence of pancreatic insulin, the combination of
increasing GCs and insulin drive the intake of pleasurable
fat/sugar, whereas, in the absence of insulin, increasing
GCs drive intake of low fat/sugar, bland rat chow.
Treating corticosterone-injected, diabetic, adrenal-
ectomized rats with insulin restores fat and/or sucrose
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intake and reduces chow feeding [80,81]. Thus, it appears
that insulin plays a profound role in food selection,
whereas GCs determine the motivation for selecting these
foods, perhaps through their actions on dopamine secretion
in the nucleus accumbens [82,83]. When insulin is injected
into the brains of intact rats, it is clear that it acts both in
the hypothalamus to decrease food intake, and at the
ventral tegmental area to decrease dopaminergic activity
and associated food intake behaviors [84]. These appar-
ently discrepant sets of results can be resolved by the fact
that our studies have moved rats from a condition of no
insulin to low-normal concentrations, whereas injecting or
infusing insulin into the cerebrospinal fluid must cause
very high concentrations of insulin in the brain. Insulin-
mediated actions are found throughout the brain and on
afferent vagal nerves [85], and it appears that insulin has
other effects than just on the hypothalamus and dopamin-
ergic cell groups to determine what is eaten, with import-
ant sequelae for energy balance and stress responsiveness.
In the absence of corticosterone, insulin concentrations
are low, food intake is reduced and rats contain lower fat
stores than normal. However, adrenalectomized rats
ingest ~30-40% of the amount of lard or sucrose eaten
by intact rats. Remarkably, when available, additional
calories from sucrose restore adrenalectomized rats to
normal, not only in terms of fat stores but also in terms
of hypothalamic CRF expression and expression of the
rate-limiting enzyme for catecholamine synthesis in the
upper brainstem (Table 1); this suggests that energy stores
are critically important for normal activity in the central
stress-response network [86]. Eating ‘comfort foods’ also
alters stress responsiveness in intact rats. Under both
acute and repeated restraint stress, CRF expression and
ACTH secretion is reduced when rats are allowed to eat fat
or sucrose in addition to chow [30,31,87]. Although
increased ingestion of palatable foods during and after
stressors might simply reflect a pleasurable activity that
reduces the discomfort of stress, signals from eating these
foods also reduce activity in the central stress-response
network through reducing CRF hyperactivity. It appears
probable that stress-induced activation of the emotional
brain is reduced in animals and people with available
palatable foods and plentiful energy stores [88].

GC, CRF, learning, memory and habit

Acting at least in the amygdala, hippocampus, insula,
anterior cingulate and other areas of the prefrontal cortex
(Figure 2), norepinephrine, GC and CRF are critical for
learning and remembering, particularly following
emotional events with negative valence [89-91]. Thus,

Table 1. Drinking 30% sucrose ad libitum has similar restorative effects to supplying replacement corticosterone in
adrenalectomized rats compared with sham-adrenalectomized controls

Adrenalectomy

Adrenalectomy + 30% sucrose

Adrenalectomy + corticosterone

In the CNS

CRF in the CeA Decreased
CRF in the PVN Increased
DBH in the LC? Decreased
In the periphery

Insulin Decreased
Fat depot weight Decreased

Normal
Normal
Normal

Normal
Normal

Normal
Normal
Normal

Normal
Normal

2DBH=norepinephrine-synthesizing enzyme, dopamine B-hydroxylase, in the brainstem locus coeruleus; CeA = central nucleus of the amygdala; PVN = paraventricular

nucleus of the hypothalamus.
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when stress promotes GC-induced, insulin-delineated
palatable food intake, memory is laid down for future recall
of this coupling. An association is almost certainly made
between ‘feeling stressed’ and ‘feeling better’ after indul-
ging in ‘comfort foods’. This can be a critical link between
stressors and eating-induced obesity. Stressors promote
more habitual behaviors at the expense of cognitive, goal-
directed actions in humans [92,93]. Learned associations,
when reinforced through synaptic plasticity, can turn into
habits that are expressed through activity in the basal
ganglia with little conscious recognition of the habit
[58,94]. It is a small step to take, from cooling off emotional
feelings induced by an intense, unmanageable stressor via
eating rewarding foods, to instead using these foods to
produce the same effect during lower intensity stimuli,
such as ongoing low-grade stress, tiredness or repeated,
small upsetting events.

The obvious problems with the habitual use of food to
reduce feelings of stress are two-fold. First, emotional
‘comfort feeding’ when used repeatedly results in primarily
abdominal obesity because of the greater sensitivity of
abdominal adipose tissue to the combined signals of insulin
and GC [95]. Second, and perhaps more importantly, it
might serve in some individuals to relieve the stress-
induced mental discomfort to the extent that conscious
thought about how to cope with the stressor does not occur.
Once stress-induced feeding becomes habitual, the pro-
blem-solver, executive part of the prefrontal cortex might
no longer be actively engaged in the outcome; ‘comfort food’
intake can become a reflex. However, it is clear that con-
scious use of the prefrontal cortices can, with work, abro-
gate bad habits. This fact forms the basis for meditational
and mindfulness exercises used by many [96,97].

Stress-induced obesity: a cultural paradox

Given that feeding is essential for life, and that energy
stores are required for both finding food and for cognition
and planning to allow escape or travel to sites with more
food (flight) or warring with neighbors for food (fight), it is
not surprising that neural networks that subserve feeding
and stress responses appeared in early life forms [98]. The
impetus provided by GCs, and the bias that insulin pro-
vides to pursue more pleasurable foods that, in excess, can
be stored by the same hormones, is a reasonable solution to
caloric scarcity. During human evolution, food was scarce,
and life-threatening stressors were frequent; GCs were
probably frequently elevated and insulin was relatively
low, except when feeding. It is probable that during those
times there was little to no obesity.

In our current conditions of plentiful, palatable and
easily accessible food, together with the proliferation of
social stressors, there is increased stressor-associated non-
homeostatic feeding. This causes obesity and associated
hypersecretion of insulin. However, eating highly palata-
ble foods also appears to decrease the feeling of stress and
this can reinforce subsequent eating of pleasurable foods
when the emotional self feels uncomfortable. It is probably
not a healthy thing to do and can decrease longevity;
reducing caloric intake by ~30% below normal extends
the lifespan and reduces disease in monkeys and other
mammals [99]. Thus, to extend our health and lifespan, it
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makes sense to markedly reduce our total food intake, and
particularly our intake of snack and prepared foods that
are high in palatable calories. With that said, however,
relieving an occasional intense feeling of stress by eating
something pleasurable does not cause obesity; however,
habitual relief of life’s discomforts using this means inevi-
tably leads to obesity.

It seems of critical importance then, with regard to the
current obesity epidemic, to deliberately increase training
of our cognitive, executive prefrontal brains to overcome
emotional, habitual responses, using techniques such as
mindfulness and meditation, to become, be and remain
aware of those habits that, although acquired easily,
strongly reinforce stress-induced eating. Such individual
practices, or even public health programs that are centered
on focused mindfulness training might modify some of the
stress-induced eating habits that contribute to the current
epidemic of obesity.
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