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INTRODUCTION

Perceived stress influences health behaviors across 
multiple domains, with high stress levels associated 
with a high-fat diet, less frequent exercise, and ciga-
rette smoking [1]. A recent national survey found that 
44% of adults report feeling greater stress now than they 
did 5 years ago, and 39% report eating too much or eat-
ing unhealthy foods due to feelings of stress in the past 
month [2]. Chronic life stress is associated with increased 
consumption of energy- and nutrient-dense “comfort 
foods,” particularly high-fat and high-sugar foods [3]. 
This altered eating behavior in times of stress is referred 
to as stress-induced eating, emotional eating, or comfort eat-
ing. While the first term refers to eating behavior being 
specifically altered in response to feelings of stress, the 
latter two terms may be used to describe altered eating 
in response to a range of emotional states (e.g. stress, 
sadness, anger, or boredom). Here we primarily focus on 
stress-induced eating because it is clearly operationally 
defined across species and is most commonly examined 
in existing research.

Acute psychological stress in humans is associated 
with increased food intake even in the absence of hun-
ger [4]. For example, in student populations, exams or 
high workload have been associated with higher 
energy and fat intake [5] or a decreased quality of 
dietary nutrition [6]. Furthermore, chronic stress expo-
sure also promotes stress-induced eating behavior. 
Psychological stress due to interpersonal and work-
related daily hassles is associated with an increased 
consumption of high-fat and high-sugar between-meal 
snacks and with decreased consumption of main meals 
and vegetables [7].

Not all individuals increase their food intake in 
response to stress; in studies of self-reported stress and 
food intake, approximately 40–70% of humans report 
increasing and 30–60% report decreasing their food 
intake under stress [8,9]. Researchers have yet to fully 
identify which factors account for these individual differ-
ences, but body mass index (BMI) may matter. Data from 
the Whitehall II study indicated that under stress condi-
tions, individuals with higher initial BMI tend to gain 
weight and vice versa [10]. Twin studies indicate that 
stress-induced eating may also be partially heritable [11]. 
Some researchers have also observed gender [12] and 
racial/ethnic differences [13] in the levels of stress-
induced eating, with females and black individuals 
engaging in more emotional eating, and others not [14]. 
Individuals characterized by restrained eating and sensi-
tivity to chronic stress may also be particularly suscepti-
ble to stress-induced eating [4]. Regardless of whether the 
overall amount of food consumption changes under stress, 
all individuals (including nonhuman animals) alter their 
eating habits to consume palatable foods characterized 
by high-calorie, high-sugar, and high-fat content [15].

Persistent stress-induced eating behavior over time 
results in intra-abdominal obesity [16], which is strongly 
associated with metabolic syndrome, hypertension, type 
2 diabetes mellitus, cardiovascular disease, morbidity, 
and mortality [17,18]. The association of stress-induced 
eating with increased visceral fat accumulation has moti-
vated the development of stress-induced eating inter-
ventions on the premise that stress eating is unequivocally 
harmful [19]. However, there is a growing literature 
demonstrating the potentially salutary role of stress-
induced eating behavior in dampening both physiologi-
cal and behavioral stress responses.
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In this chapter, we review cross-species literatures 
describing how experiences of stress affect eating behav-
ior and fat distribution, and vice versa. First, we review 
research demonstrating the effects of both acute and 
chronic stressors in promoting stress-induced eating. 
Next, we discuss how repeated engagement in stress-
induced eating under chronic stress conditions leads to 
the accumulation of visceral fat, as evidenced primarily 
in studies of nonhuman animals. We then review the 
burgeoning literature supporting the joint role of stress-
induced eating and abdominal fat in attenuating stress 
responses, focusing on glucocorticoids and insulin as 
endocrine promoters of these processes. We go on to 
describe potential affective and neural mechanisms for 
perpetuating the cycle of stress-induced eating. The vast 
majority of data regarding the physiological and behav-
ioral effects of stress-induced eating comes from studies 
of nonhuman animals. However, to the extent that these 
effects have been tested in humans, consistent results 
have been observed. We conclude our discussion with a 
summary of the remaining gaps in the literature and 
suggestions for future research.

GLUCOCORTICOIDS AND INSULIN 
PROMOTE STRESS-INDUCED EATING

Both physical and psychological stressors are known 
to stimulate the hypothalamic-pituitary-adrenal (HPA) 
axis. Stress-induced activation of the HPA axis begins 
with the release of corticoliberin [corticotropin-releasing 
factor (CRH), encoded by the CRH gene] from the hypo-
thalamus, which stimulates the release of adrenocorti-
cotropic hormone (ACTH) from the anterior pituitary 
gland. ACTH then circulates through the bloodstream 
to the adrenal cortex, where it stimulates glucocorticoid 
secretion [20].

Increased glucocorticoid secretion following HPA axis 
activation appears to be a central pathway through 
which stress promotes the consumption of palatable 
foods. In a sample of healthy premenopausal women, 
individuals who exhibited a higher total cortisol output 
in response to a laboratory stressor consumed more calo-
ries that day compared to those with a lower total corti-
sol response [21]. Furthermore, oral administration of 
glucocorticoids in healthy white males has been shown 
to increase their intake of total energy, carbohydrate, and 
protein, but not of fat [22]. Dose-response effects of glu-
cocorticoid concentrations on eating behavior may be 
robustly tested through the study of adrenalectomized 
organisms, as they lack the capability to naturally pro-
duce glucocorticoids via the adrenal glands. In adrenal-
ectomized rats, the administration of corticosterone 
directly affects the consumption of both saccharin and 
sucrose in a dose-response manner, with larger 

corticosterone doses resulting in a greater proportional 
intake of these substances [23,24].

Importantly, increased glucocorticoid concentrations 
stimulate insulin secretion [25]. In a series of experiments 
in rats, La Fleur and colleagues identified complex interac-
tions between corticosterone and insulin in the regulation 
of food intake, finding that glucocorticoids elicit dose-
related increases in total caloric intake, and that increased 
insulin concentrations stimulated by glucocorticoids spe-
cifically regulate the amount of fat consumed [26]. These 
effects are evidenced in studies of adrenalectomized, dia-
betic rats, in which concurrent glucocorticoids and insulin 
promote a shift in intake toward fat and sugar, whereas 
glucocorticoids in the absence of insulin promote the con-
sumption of bland rat chow. Therefore, it seems that gluco-
corticoids function to increase general food-associated 
drives, while insulin influences preferences for which 
types of foods are consumed.

GLUCOCORTICOIDS AND  
INSULIN PROMOTE VISCERAL FAT 

ACCUMULATION

Insulin and glucocorticoids also have complex inter-
actions in fat accumulation. These hormones have 
acutely antagonistic effects, with glucocorticoids inhibit-
ing energy storage and insulin promoting energy stor-
age [27]. However, in the location of fat stores, insulin 
and high glucocorticoids act synergistically to promote 
visceral fat accumulation, especially under chronically 
stressful conditions [28,29]. Cortisol binds to glucocor-
ticoid receptors and activates lipoprotein lipase (LPL), 
thus increasing triglyceride accumulation in adipocytes. 
In the presence of insulin, cortisol also inhibits the lipid-
mobilizing system, resulting in triglyceride retention 
[28]. Concurrent cortisol and insulin also promote vis-
ceral fat accumulation indirectly by inhibiting the activ-
ity of somatotropin/growth hormone, which otherwise 
exerts lipolytic effects [30]. These processes are amplified 
in intra-abdominal adipose tissue, where there is a par-
ticularly high density of glucocorticoid receptors com-
pared to other fat depots [28]. Visceral fat accumulation 
further perpetuates this cycle by providing increased 
intracellular glucocorticoids [31]. These effects are par-
ticularly apparent in patients with Cushing syndrome, 
who are both hypercortisolemic and hyperinsulinemic  
and have high levels of intra-abdominal obesity [32].

These processes have been demonstrated experi-
mentally. In rats, the administration of high glucocor-
ticoid concentrations in the presence of insulin 
increases fat stores [26,33]. Although no experimental 
studies are known to have been conducted in humans, 
preliminary evidence suggests that some of the same 
processes are at work. For example, the synergistic 
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role of these hormones in promoting stress-induced 
eating and weight gain is supported in a sample of 
healthy medical students who categorized themselves 
as consistently eating either more or less during stress 
[34]. Students that characterized themselves as norma-
tively eating more during stress tended to gain more 
weight and also demonstrated increases in urinary 
cortisol and insulin levels during exam periods, con-
trolling for baseline. Although this study did not test 
for expected increases in fat and sugar consumption 
related to increased insulin, the increase in total food 
intake self-reported by the “eat-more” group is consis-
tent with their corresponding elevated cortisol 
concentrations.

STRESS-INDUCED EATING DAMPENS 
PHYSIOLOGICAL AND BEHAVIORAL 

STRESS RESPONSES

There is increasing evidence from animal models sup-
porting an important therapeutic role of comfort eating 
in inhibiting the HPA axis response to both acute and 
chronic stressors. Studies in nonhuman animals have 
demonstrated what Dallman and colleagues have termed 
a chronic stress response network model, that is, a process 
through which stress-induced eating decreases neuroen-
docrine activity associated with the physiological stress 
response [33]. For example, in rats exposed to chronic 
restraint stress, the provision of palatable lard or sucrose 
has been shown to dampen stress responses compared to 
a diet of less palatable chow [35]. In particular, there is an 
attenuated physiological stress response in the form of 
reduced ACTH secretion. The consumption of palatable 
food may reduce HPA outflows even in the absence of 
stress; nonstressed rats given the palatable diet showed 
reduced Crh expression compared to nonstressed rats 
given chow. Similarly, in rats exposed to chronic unpre-
dictable physical stress, the provision of daily limited 
access to sucrose or saccharin solutions decreased Crh 
mRNA expression in the paraventricular nucleus of 
the hypothalamus [36]. Furthermore, sucrose ingestion 
reduced the plasma corticosterone response to restraint 
in these chronically stressed rats. Additional research 
suggests that a palatable diet is also effective in damp-
ening physiological responses to acute stressors. A study 
in rats tested the effects of prior access (7 days) to chow 
versus palatable foods on HPA axis activation following 
4 h of acute restraint stress [37]. Rats with prior access to 
palatable foods showed inhibited ACTH and corticos-
terone responses, as well as reduced Crh mRNA in the 
hypothalamus and oval nucleus of the bed nuclei of the 
stria terminalis. In summary, these studies suggest that 
the consumption of palatable foods decreases endocrine 
responses to both acute and chronic physical stressors.

In addition to attenuating physiological stress 
responses, the consumption of palatable food has also 
been shown to ameliorate behavioral responses to stress-
ors. In rats, the ingestion of palatable food reduces the 
effects of chronic maternal separation stress, decreasing 
anxiety and depressive-like behaviors [38]. Likewise, in 
mice exposed to chronic unpredictable social defeat and 
overcrowding stress, concurrent subjection to a high-fat 
diet decreased the expression of anxiety and depressive-
like behaviors, compared to mice on a concurrent low-fat 
diet. However, a high-fat diet appears to protect from 
some but not other behavioral effects of chronic social 
stress; for example, social avoidance and anhedonic 
behavior were not affected [39]. Finally, in male rats, the 
short-term (7 days) intake of a high-fat diet reduced 
acute behavioral anxiety response to an elevated plus 
maze stressor. This effect appears to be highly depen-
dent upon macronutrient content, as comparison high-
carbohydrate and high-protein diets did not decrease 
anxiety behaviors [40]. These results consistently sup-
port the protective role of a palatable diet in reducing 
anxiety and depressive behaviors in response to both 
acute and chronic psychosocial stressors. While no 
known studies to date have experimentally tested these 
behavioral effects in humans, these findings in rodent 
models may be particularly relevant to human popula-
tions; compared to the administration of physical stress-
ors, the psychosocial stress paradigms employed in these 
behavioral studies bear a closer resemblance to the types 
of stressors naturally experienced by some humans.

REINFORCEMENT OF STRESS-INDUCED 
EATING VIA AFFECTIVE RESPONSES, 

THE REWARD SYSTEM, AND  
ENHANCED MEMORY

Stress and food intake interact in a bidirectional man-
ner. Just as stress and mood can alter eating behavior, 
food choice can conversely impact stress and mood, 
whether deliberate or unintended. As reviewed by 
Gibson [41], choosing to eat particular foods can alter 
mood via sensory or hedonic effects, associated social 
context, cognitive expectations, psychological distraction, 
changes in appetite, or nutritional modulation of brain 
function. For example, high-sugar, high-fat foods low 
in protein may ameliorate stress via enhanced function-
ing of the serotonergic system. Laboratory experiments 
have also demonstrated that sweet-tasting substances 
may provide analgesic effects during acute stressors, e.g. 
increasing pain threshold latency and pain tolerance dur-
ing cold-pressor tasks [42,43]. Taken together, these find-
ings suggest a general capability of comfort foods to elicit 
desirable affective or sensory responses in humans, which 
may function to reinforce stress-induced eating behavior.
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The experience of eating can be both pleasurable and 
rewarding. Indeed, the addiction literature suggests that 
repeated activation of neural reward circuitry may also 
drive stress-induced eating. Food intake stimulates the 
release of endogenous opiates and activates neural sub-
strates such as dopamine in a similar manner to drugs  
of abuse, albeit with differences in intensity [44]. 
Consequently, opiate release may serve to protect an 
organism from the detrimental effects of stress by 
decreasing HPA axis activity and dampening the stress 
response. In a reward-based stress eating model, 
repeated stimulation of reward pathways coinciding 
with stress-induced eating may result in neurobiological 
adaptations that promote the compulsive nature of over-
eating [31]. Reward-related consumption can result in 
caloric intake exceeding requirements, and may be a 
critical etiological pathway in the development of obe-
sity, in particular abdominal obesity [45].

In addition, the cycle of stress-induced eating may 
also be perpetuated by learning and memory via the 
action of glucocorticoids. Considerable evidence has 
accumulated indicating that glucocorticoids are crucially 
involved in the regulation of memory, specifically 
enhancing memory consolidation of emotionally arous-
ing experiences [46]. Thus, when stress promotes gluco-
corticoid-induced palatable food intake, glucocorticoids 
also facilitate the formation of cognitive associations 
between comfort food indulgence and subsequent posi-
tive affect.

ROLE OF GLUCOCORTICOIDS  
AND VISCERAL FAT IN DAMPENING 

STRESS RESPONSES

In addition to their role in promoting stress-induced 
eating and memory formation, glucocorticoids are also 
crucial in the development of visceral fat accumula-
tion [28], which in turn attenuates stress responses [33]. 
The effect of stress-induced glucocorticoid secretion 
on subsequent ACTH secretion is dependent upon the 
chronicity of stressors. Within hours of acute stressors, 
glucocorticoids directly inhibit further activity in the 
HPA axis [47], but across the course of days the chronic 
actions of glucocorticoids on the brain are directly excit-
atory [33]. As summarized by Dallman and colleagues 
[33], chronically high glucocorticoid concentrations act 
in three functionally congruent ways: (1) increasing the 
expression of Crh mRNA in the amygdala; (2) increas-
ing the salience of pleasurable or compulsive activities, 
including the motivation to consume “comfort food”; 
and (3) systematically increasing visceral fat stores. 
These visceral stores then send a negative feedback sig-
nal to inhibit both catecholamines in the brainstem and 
CRH expression in hypothalamic neurons that regulate 

ACTH. Indeed, studies in chronically stressed rats have 
consistently demonstrated a strong negative correla-
tion between intra-abdominal fat stores and hypotha-
lamic CRH expression [16,48]. Therefore, it seems that 
under chronic stress conditions, abdominal fat serves 
as a surrogate for the negative feedback signal of glu-
cocorticoids that is normally present under acute stress 
conditions, thus inhibiting further HPA activation. 
Although the particular signal to the brain that repre-
sents increased abdominal fat stores remains unidenti-
fied, it is apparent that this signal does indeed act in 
the brain to decrease the adverse effects of the chronic 
stress response, plausibly promoting feelings of well-
being [16].

While stress-induced palatable eating and greater 
abdominal fat stores have consistently been shown to 
reduce signs of stress in rodent models, there is a dearth 
of research examining these processes in other organ-
isms. However, preliminary evidence suggests that these 
processes are indeed conserved across species.

In a study by our group [50], women with high chronic 
perceived stress reported more emotional eating and 
had significantly greater BMI and sagittal diameter in 
comparison to low-stress women. Emotional eating 
behavior was measured using the Dutch Eating Behavior 
Questionnaire (DEBQ) [51], a well-validated measure of 
eating behavior. In addition to these cross-sectional 
results, a laboratory component of the study also mea-
sured HPA axis activation in response to an acute labora-
tory stressor, the Trier Social Stress Test (TSST) [52]. This 
is a procedure designed to induce psychological and 
physiological stress responses via the performance of 
both a speech task and mental arithmetic task in front of 
an evaluative audience. Following the TSST, the chronic 
high-stress women showed a blunted cortisol response 
and lower diurnal cortisol levels compared to low-stress 
women. While these findings are consistent with rodent 
models, this study is limited by its lack of direct mea-
surement of eating behavior following stressor 
exposure.

Two additional studies in humans expand upon  
previous findings by directly measuring food intake 
after exposure to an acute laboratory stressor. The first 
study compared female students with extremely high or 
low scores on emotional eating, as measured by the 
DEBQ [53]. The study exposed participants to a modi-
fied TSST, subsequently assessing total cortisol response 
to the stressor, as well as their food intake. Results 
revealed emotional eating to be a significant moderator 
of the relationship between cortisol stress reactivity and 
food intake. High emotional eaters with a blunted  
cortisol response consumed more food after stress than 
those with an elevated cortisol response, whereas no 
relationship was found in low emotional eaters. Thus, 
these results are consistent with previous studies 
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demonstrating a relationship between blunted cortisol 
stress response and increased stress-induced eating in 
high emotional eaters.

Using a similar experimental design, Tryon et al. 
assessed both food intake and total cortisol response fol-
lowing administration of the TSST [54]. In this sample of 
healthy, perimenopausal women, responses to the 
stressor were compared on the basis of high vs. low self-
reported chronic stress levels, as measured by the 
Wheaton Social Stress Index [55]. Women with high 
chronic stress and low cortisol reactivity consumed more 
calories from chocolate cake in response to the stressor. 
Moreover, the combination of high chronic stress and 
low cortisol reactivity was positively associated with 
total fat mass and regional fat percentage. This finding 
supports the previously discussed concept of a meta-
bolic feedback pathway, in which a signal sent from adi-
pose tissue inhibits activation of the HPA axis. In 
conclusion, early studies in humans repeatedly show 
correlations between high chronic stress, high emotional 
eating, greater abdominal fat, and decreased cortisol 
responses to acute laboratory stressors. Future studies 
should expand upon this work by investigating how 
stress-induced eating and abdominal fat stores affect 
responses to naturalistic stressors in humans.

Additional evidence from an epidemiological study 
supports the chronic stress response network model. In 
black individuals, the relationship between stressors and 
meeting major-depression criteria was buffered in obese 
individuals, compared to nonobese individuals [13]. 
Although this study was limited by its lack of a direct 
measurement of eating behavior, it suggests a significant 
paradox in which obesity (a proxy for overeating) serves 
a protective role for mental health outcomes, while 
simultaneously contributing to negative physical health 
outcomes in the form of higher rates of chronic condi-
tions, morbidity, and mortality. Further research is 
needed to test the potential protective role of obesity and 
stress-induced eating behavior for mental health by spe-
cifically exploring its capacity for dampening psycho-
logical stress responses.

While stress-induced eating has been shown to reli-
ably attenuate stress responses in rodents, and prelimi-
narily in humans, these effects may be variable in other 
species. For example, in a study of 10 adult female rhe-
sus monkeys, stress-induced eating was shown to 
decrease behavioral, but not physiological stress 
responses [56]. For a period of 3 weeks of social subordi-
nation stress exposure, the females were assigned to 
either a low-calorie diet or to a choice condition with the 
provision of both a low- and high-calorie diet. Food 
intake, cortisol secretion, and socioemotional behavior 
were assessed over time in both subordinate females and 
nonstressed dominant females. Of the females in the 
diet-choice condition, subordinate females consumed 

more calories from the high-calorie diet and gained more 
weight compared to dominant females. However, the 
provision of a high-calorie diet was associated with a 
flattening of the diurnal cortisol rhythm and did not 
decrease the cortisol response to acute social separation. 
Although these physiological findings are inconsistent 
with previous work in other species, diet condition did 
indeed influence behavioral stress responses over time. 
While females in the low-calorie diet condition exhibited 
increasing rates of anxiety-like behaviors, females in the 
diet-choice condition showed decreasing rates of these 
behaviors. Interestingly, rates of aggressive behavior 
directed at other females were significantly higher for 
females in the no-choice condition with only the low-
calorie diet available. In summary, stress-induced eating 
may decrease physiological stress responses in some, but 
not all, species. Nevertheless, cross-species data consis-
tently show decreased behavioral stress responses with 
the provision of a palatable diet.

CONCLUSION AND FUTURE 
DIRECTIONS

There is strong evidence across species that both acute 
and chronic stressors promote increased consumption of 
palatable comfort foods. Furthermore, studies in rodents 
have consistently shown that chronic persistence in 
stress-induced eating behavior results in increased vis-
ceral fat accumulation, which functions to attenuate HPA 
axis activation in response to stressors. These effects have 
only just begun to be tested in humans; however, prelim-
inary evidence is consistent with the dampened stress 
responses demonstrated in rodents. Of the few studies 
that have investigated these processes in humans, the 
outcome measures of stress have been responses to acute 
social evaluative stressors administered in the laboratory 
setting. Additional research is needed to explore how 
stress-induced eating might reduce experiences of stress 
related to more heterogeneous and naturally occurring 
stressors outside the laboratory.

In addition to exploring how the chronic stress 
response network functions in humans, future studies 
should also include experimental designs aimed to 
investigate multiple stress systems. Previous research 
has primarily focused on HPA axis activation as the prin-
cipal outcome measure of dampened stress responsivity. 
However, autonomic and immune system activity is also 
heavily influenced by exposure to stressors. Therefore, 
future work should evaluate the potential role of stress-
induced eating in similarly attenuating responses to 
stress across these additional physiological systems.

Furthermore, little is known about how stress damp-
ening may be particularly dependent upon the macro-
nutrient content of palatable foods. Are characteristically 
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high-sugar, high-fat foods necessary for decreasing 
stress responsivity or can high-protein, or simply high-
calorie, foods also elicit these responses?

Future research should also carefully delineate which 
specific types of circumstances or emotional exposures 
are most responsible for triggering the stress-induced 
eating process. For example, is general stress driving this 
behavior, or do certain characteristic types of stress, such 
as uncontrollable or unpredictable stress experiences, 
have the same effect? Alternatively, are experiences with 
other types of negative emotion (e.g. anger, sadness, or 
worry), or even positive emotion, also effective in elicit-
ing stress-induced eating and its corresponding attenu-
ated stress response?

Similarly, researchers should investigate which indi-
viduals are particularly (1) susceptible to stress-induced 
eating and (2) effective in dampening stress responses 
via stress-induced eating. Some evidence supports 
genetics, BMI, and demographic characteristics such as 
gender and race/ethnicity as potential candidates for the 
former; virtually no research exists on the latter.

Finally, existing research has yet to conclusively iden-
tify the peripheral negative feedback signal to the brain 
that promotes the inhibition of further HPA axis activa-
tion during chronic stress exposure [for a review, see 56]. 
Potential signal mechanisms and structures include 
insulin activity, vagus nerve stimulation, and neural 
alterations in the activity of the prefrontal cortex.

Although obesity is known to develop from myriad 
genetic and environmental factors, the growing litera-
ture on stress-induced eating will elucidate the complex 
relationships between stress, eating, and obesity. If 
stress-induced eating leads to the consumption of food 
in excess of nutritive requirements, then this behavior 
may culminate in abdominal weight gain and obesity. 
However, the dampened physiological and behavioral 
stress responses demonstrated in numerous studies sug-
gest that stress-induced eating provides short-term ame-
lioration of stress. This ostensible benefit of stress-induced 
eating has important implications for evaluating whether 
attempts at stress-induced eating intervention are an 
appropriate response to the behavior. Further research 
evaluating the causes and effects of stress-induced eat-
ing will improve our understanding of why individuals 
engage in this behavior and how it functions as a con-
tributing factor in the etiology of obesity.
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